The Nuclear Poly(A)-Binding Protein Interacts with the Exosome to Promote Synthesis of Noncoding Small Nucleolar RNAs

Jean-François Lemay,1 Annie D’Amours,1 Caroline Lemieux,1 Daniel H. Lackner,2 Valérie G. St-Sauveur,1 Jürg Bähler,2 and François Bachand1,*

1RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC JIH 5N4, Canada
2Department of Genetics, Evolution and Environment and UCL Cancer Institute, University College London, London WC1E 6BT, UK
*Correspondence: f.bachand@usherbrooke.ca
DOI 10.1016/j.molcel.2009.12.019

SUMMARY

Poly(A)-binding proteins (PABPs) are important to eukaryotic gene expression. In the nucleus, the PABP PABPN1 is thought to function in polyadenylation of pre-mRNAs. Deletion of fission yeast pab2, the homolog of mammalian PABPN1, results in transcripts with markedly longer poly(A) tails, but the nature of the hyperadenylated transcripts and the mechanism that leads to RNA hyperadenylation remain unclear. Here we report that Pab2 promotes poly(A) tail trimming from pre-snoRNAs by recruiting the nuclear exosome. This work unveils a function for the nuclear PABP in snoRNA synthesis and provides insights into exosome recruitment to polyadenylated RNAs.

INTRODUCTION

Polyadenylation of RNA is fundamental to posttranscriptional gene regulation. In eukaryotes, the 3’ poly(A) tail is generally thought to confer positive roles in the mRNA life cycle, such as nuclear export competence, stability, and translational activity. In contrast to these positive roles, recent studies in humans, plants, and yeast reveal that the poly(A) tail can also target an RNA for degradation via the nuclear exosome (Chekanova et al., 2007; LaCava et al., 2005; Vanacova et al., 2005; Wang et al., 2008; West et al., 2006; Wyers et al., 2005). The exosome complex is one of the primary systems that operates in RNA processing and degradation in eukaryotes. Although the exosome is evolutionarily conserved, it has been most extensively studied in Saccharomyces cerevisiae. In this organism, the exosome is composed of nine catalytically inactive polypeptides to which is associated the active 3’→5’ exonuclease, Rrp44/Dis3 (Houseley et al., 2006; Ibrahim et al., 2008; Lebreton and Seraphin, 2008; Schmid and Jensen, 2008; Vanacova and Stefl, 2007). Because inactivation of the exosome via deletion or mutation of any of these ten subunits perturbs similar steps in RNA processing, they are often referred to as the core exosome. The core exosome is found in the nucleus and the cytoplasm. In the nucleus, the activity of the core exosome is associated with an additional 3’→5’ exonuclease, Rrp6 (Allmang et al., 1999b). Despite the physical association between Rrp6 and the nuclear exosome, genetic and biochemical evidence indicates that they can perform distinct roles in RNA processing (Allmang et al., 1999a; Callahan and Butler, 2008; Grzchnik and Kufel, 2008; Milligan et al., 2005; Mitchell et al., 2003; van Hoof et al., 2000). Polyadenylation-dependent exosome processing can lead to the complete digestion or the partial 3’ end trimming of a substrate RNA (Houseley et al., 2006; Lebreton and Seraphin, 2008; Schmid and Jensen, 2008; Vanacova and Stefl, 2007). As yet, the molecular details behind the choice between 3’ end maturation and complete degradation by the exosome are not clearly understood. Poly(A)-dependent exosome activation is promoted by a polyadenylation complex called TRAMP (for Trf4/5-Air1/2-Mtr4 polyadenylation complex). Notably, the polymerase activity of the TRAMP complex is not mediated by the canonical nuclear poly(A) polymerase (Pap1 in S. cerevisiae) that catalyzes mRNA polyadenylation but via the product of the TRF4 or TRF5 genes in S. cerevisiae (Houseley and Tollervey, 2006; Vanacova et al., 2005; Wyers et al., 2005) and the cid14 gene in S. pombe (Win et al., 2006). Although TRAMP-mediated polyadenylation is believed to mark most RNAs that are destined for exosome-dependent processing, the accumulation of specific polyadenylated transcripts in RRP6Δ cells reduces after inactivation of Pap1 (Carneiro et al., 2007; Grzchnik and Kufel, 2008; van Hoof et al., 2000), suggesting a role for the canonical poly(A) polymerase in exosome-dependent processing.

The importance of exosome-dependent gene regulation is highlighted by the many different types of nuclear RNAs that are targeted by this pathway, including aberrant premRNAs (Bousquet-Antonelli et al., 2000; Milligan et al., 2005; Saguez et al., 2008; West et al., 2006), unprocessed rRNAs (Allmang et al., 1999a; 2000; Dez et al., 2006), unmodified tRNAs (Kadaba et al., 2006; Vanacova et al., 2005), cryptic unstable transcripts (Argo et al., 2006; Vasiljeva et al., 2008; Wyers et al., 2005), and small nuclear (sn) and small nucleolar (sno)
RNAs (Allmang et al., 1999a; Grzechnik and Kufel, 2008; van Hoof et al., 2000). snoRNAs are an important class of nonpolyadenylated RNAs that assemble into ribonucleoprotein (RNP) particles to act in pre-rRNA processing and modification (Reichow et al., 2007). snoRNAs can be divided into two functional classes depending on the type of pre-rRNA modification that is promoted: box C/D snoRNAs guide 2’-O-ribose methylation, whereas box H/ACA snoRNAs guide pseudouridylation. While the majority of yeast snoRNAs are independently transcribed as larger precursors by RNA polymerase II, a limited number are encoded from intronic sequences of pre-mRNAs (Kiss et al., 2006). A polyadenylation-independent maturation pathway that involves 3’→5’ trimming of 3’-extended precursors by the exosome has been proposed for the synthesis of independently transcribed yeast snoRNAs (Carroll et al., 2004; Fatica et al., 2000; Kim et al., 2006; Steinmetz et al., 2001; Vasiljeva and Buratowski, 2006). However, a recent study suggests that a polyadenylation step is important for pre-snoRNA 3’ end processing via the nuclear exosome (Grzechnik and Kufel, 2008). Yet the mechanism by which 3’ poly(A) tails recruit the nuclear exosome to specific transcripts remains poorly understood.

The evolutionarily conserved nuclear poly(A)-binding protein (PABP2/PABPN1) is the nuclear counterpart of the well-studied cytosolic PABP (PABPC1 in humans and Pab1 in yeast). PABPN1 is characterized by a putative coiled-coil region, a single RNA recognition motif, and a carboxy-terminal glycine/arginine-rich domain (Kuhn and Wahle, 2004; Mangus et al., 2003). Experiments using in vitro assays suggest that PABPN1 plays essential roles in mRNA polyadenylation: (1) PABPN1 stimulates processive poly(A) synthesis by direct and simultaneous interactions with the poly(A) polymerase and the growing poly(A) tail (Kerwitz et al., 2003); and (2) PABPN1 promotes, via a poorly defined mechanism, the transition from processive to distributive synthesis after addition of ~200–300 adenine residues (Wahle, 1995). We have recently reported the identification of a PABPN1 homolog in the fission yeast Schizosaccharomyces pombe (Perreault et al., 2007). Notably, deletion of S. pombe pab2 results in the expression of RNAs with hyperadenylated tails (Perreault et al., 2007); yet the mechanism that leads to hyperadenylation remains unknown.

Here we used DNA microarrays to identify hyperadenylated transcripts detected in pab2Δ cells. Using this genome-wide approach, we found that the absence of Pab2 leads to the accumulation of polyadenylated snoRNAs, and we describe the molecular mechanism of their accumulation. We find that Pab2 is recruited to the 3’ end of snoRNA-encoding genes, is bound to polyadenylated snoRNAs, and is physically associated with the nuclear exosome, suggesting that Pab2 recruits the exosome to promote 3’ end processing of polyadenylated pre-snoRNAs. Our results have therefore unveiled an example of a PABP involved in the synthesis of noncoding RNAs.

RESULTS

Small Nucleolar RNAs Are Upregulated in pab2Δ Cells

We previously reported that pab2Δ cells display hyperadenylated RNAs (Perreault et al., 2007). In principle, poly(A) tail extension could influence RNA metabolism and modulate gene expression. Accordingly, a genome-wide strategy was established to investigate for gene expression changes in pab2Δ cells to distinguish between a general or a specific effect of Pab2 on RNA polyadenylation. Reverse transcription steps prior to microarray analysis were randomly primed to prevent any bias due to poly(A) tail length differences between wild-type and pab2Δ cells. A global comparison of gene expression between wild-type and pab2Δ cells is presented in Figure 1A. Notably, the expression levels of most genes were unaffected by the deletion of pab2. A statistical analysis was used (Tusher et al., 2001) to identify RNAs that significantly changed their expression levels between wild-type and pab2Δ cells. Using a significance analysis of microarrays (SAM) with a false discovery rate of 5%, we identified 11 snoRNAs that were significantly upregulated (greater than 1.5 times wild type) in pab2Δ cells compared to wild-type cells (Table 1).

Figure 1. Gene-Specific Changes in Expression Level in the pab2Δ Strain

(A) Scatter plot of the RNA signals from wild-type (x axis) and pab2Δ (y axis) cells. Red and green dots represent genes that demonstrated statistically significant upregulation and downregulation, respectively, in pab2Δ cells as determined by significance analysis of microarray (SAM).

(B) Upregulated snoRNAs as determined by expression profiling of pab2Δ cells. Asterisks indicate those snoRNAs identified by SAM (see Experimental Procedures for details).
and \(\text{pab2}^{-}\) cells. Using a one-class comparison, we identified 113 and 85 genes that demonstrated increased and decreased RNA levels, respectively, in \(\text{pab2}^{-}\) cells (Figure 1A and see Table S1 available online). Among these 198 misregulated RNAs are protein-coding genes that could be directly or indirectly regulated by Pab2. Interestingly, several noncoding small nucleolar RNAs (snoRNAs) also showed increased RNA levels in \(\text{pab2}^{-}\) cells (Figure 1B). Because the role of PABPs in the control of noncoding RNA expression had not previously been described, we decided to address the mechanism by which snoRNAs were upregulated in the absence of Pab2.

Figure 2. Accumulation of 3′-Extended Polyadenylated snoRNAs in \(\text{pab2}^{-}\) Cells

(A–H) Total RNA prepared from wild-type and \(\text{pab2}^{-}\) cells was treated with RNase H in the presence of DNA oligonucleotides complementary to H/ACA class snoRNAs snR99 (A), snR3 (B), and snR42 (C); C/D class snoRNAs snoR56 (D) and snoR68 (E); intron-derived snoR54 (F); and adh1 (G) and pyk1 (H) mRNAs. RNase H reactions were performed in the presence (+) or absence (−) of oligo(dT). srp7 RNA was used as a loading control. Size markers (in nucleotides) are indicated on the left.

(i) Quantification of alterations in mature snoRNA levels, with the wild-type ratio set to 1. Values represent the means of at least three independent experiments, and bars correspond to standard deviations.

pab2Δ Cells Accumulate 3′-Extended Polyadenylated snoRNAs

To independently validate the results obtained by DNA microarrays, we compared snoRNA levels between wild-type and \(\text{pab2}^{-}\) strains by northern blotting. Surprisingly, larger heterogeneous populations of transcripts were specifically detected in the \(\text{pab2}^{-}\) strain along with decreased levels of mature snoRNAs (data not shown). Given that we previously reported a hyperadenylation phenotype in \(\text{pab2}^{-}\) cells (Perreault et al., 2007), we suspected that this heterogeneous RNA population could represent polyadenylated snoRNAs. To test this possibility, the 3′ end of several snoRNAs was examined by treating total RNA prepared from wild-type and \(\text{pab2}^{-}\) cells with RNase H. RNase H treatment in the presence of a DNA oligonucleotide complementary to a region roughly 100 nt upstream from the mature 3′ end will release a 3′ fragment that can be detected by northern blot. As can be seen in Figure 2A, RNase H reactions using an oligo specific to H/ACA type snR99 yielded a 100 nt fragment corresponding to the 3′ end of mature snR99. Consistent with our northern blot assays, RNase H analyses from the \(\text{pab2}^{-}\) strain showed heterogeneous 3′-extended snR99 products as well as decreased levels of mature snR99 (Figure 2A, lane 4, and Figure 2I). Importantly, addition of oligo d(T) to the RNase H reaction caused the heterogeneous population of 3′-extended snR99 transcripts to migrate as a discrete product (Figure 2A, lane 3). The collapse of heterogeneous 3′-extended snR99 transcripts into a discrete product after the addition of oligo d(T) suggests that 3′-extended snR99 are polyadenylated. This possibility was confirmed by...
snoRNAs that were tested in oligo(A) stretches 78 nt downstream from the mature 3'-end of cDNA. DNA sequencing indicated the presence of nonencoded transcribed snoRNAs, snoR3 and snoR68; Figures 2D and 2E). In contrast to independently not initially detected in the microarray experiments (snoR56 included two additional H/ACA box snoRNAs (snR3 and snR42; Figures 2A–2E and 2I). This analysis of polyadenylated RNA using Cy3-labeled oligo(dT)$_{50}$ (Ba and Be), for DNA using DAPI (Bb and Bf), for RNase H digestion of wild-type cells using this 54 nt probe produced background signal (Figure 3Aa), similar to control cells without the fluorescent probe (data not shown). This is consistent with the low level of 3'-extended snoR99 detected in wild-type cells using RNase H assays (Figure 2A). In contrast, discrete foci were detected in pab2Δ cells using the fluorescent probe specific to 3'-extended snoR99 and poly(A)-rich RNA, oligo d(T) staining (Figure 3Ab), for DNA using DAPI (Bb and Bf), and for Fib1 using GFP (Bc and Bg).

The accumulation of 3'-extended snoR99 in pab2Δ cells results from defects in a posttranscriptional mechanism, rather than the increased production of readthrough transcripts.

To determine the subcellular distribution of 3'-extended snoRNAs that accumulate in pab2Δ cells, a 54 nt probe was designed to specifically detect the 3'-extended form of H/ACA class snoR99 by fluorescent in situ hybridization (FISH). Analysis of wild-type cells using this 54 nt probe produced background signal (Figure 3Aa), similar to control cells without the fluorescent probe (data not shown). This is consistent with the low level of 3'-extended snoR99 detected in wild-type cells using RNase H assays (Figure 2A). In contrast, discrete foci were detected in pab2Δ cells using the fluorescent probe specific to 3'-extended snoR99 (Figure 3Ab). Notably, these foci precisely coincided with poly(A)+ RNA-rich foci (Figures 3Ab–3Ad) that are specifically accumulate in discrete foci in pab2Δ Cells

To further characterize the cellular localization of foci containing 3'-extended snoR99 and poly(A)-rich RNA, oligo d(T) staining was combined with the DNA-intercalating agent DAPI that stains the nucleoplasm as well as with a GFP-tagged version of fibrillarin that localizes to the nucleolus. As can be seen in Figure 3B, poly(A)-rich foci were detected in pab2Δ cells (Figure 3Be), but not in wild-type cells (Figure 3Ba). Comparison of the different staining methods showed that the poly(A) bodies were concentrated in a region that was distinct from the DAPI staining but that colocalized with GFP signal (Figures 3Bf–3Bh).

We next performed similar experiments to test whether polyadenylated products as seen for snoR99 were observed for other snoRNAs in pab2Δ cells. Notably, all of the independently transcribed snoRNAs that were tested in pab2Δ cells accumulated oligo d(T)-sensitive 3'-extended heterogeneous products (Figures 2A–2E). The accumulation of polyadenylated snoRNAs in the pab2Δ strain was also associated with reduced levels of several mature snoRNAs (Figures 2A–2E and 2I). This analysis included two additional H/ACA box snoRNAs (snR3 and snR42; Figures 2B and 2C) as well as two C/D box snoRNAs that were not initially detected in the microarray experiments (snoR56 and snoR68; Figures 2D and 2E). In contrast to independently transcribed snoRNAs, 3' end analysis of an intron-embedded C/D box snoRNA, snoR54, did not result in the accumulation of 3'-extended forms in pab2Δ cells (Figure 2F, lanes 3–4). As a control, a 3'-extended form of intron-embedded snoR54 accumulated in cells deleted for rrp6 (Figure 2F, lanes 5–6), consistent with previous studies in budding yeast (Allmang et al., 1999a; van Hoof et al., 2000). We also analyzed the 3' end of several mRNAs (Figures 2G and 2H and data not shown). As can be seen for the adh1 and pyk1 mRNAs, no differences in 3' end decision and poly(A) tail length were detected between wild-type and pab2Δ cells. These experiments indicate that the absence of Pab2 leads to the accumulation of 3'-extended polyadenylated snoRNAs.

The accumulation of 3'-extended snoRNAs in pab2Δ cells could be the result of increased transcriptional readthrough as a consequence of defects in transcriptional termination. To address this possibility, we performed chromatin immunoprecipitation (ChIP) assays to examine the density of RNA Pol II along snoRNA genes. ChIP assays have previously been used in yeast to show 3'-extended Pol II crosslinking in mutants defective in transcription termination (Kim et al., 2006; Steinmetz et al., 2006; Thiebaut et al., 2006). Pol II densities at determined by ChIP were similar in regions 3' of the H/ACA class SNR99 gene between wild-type and pab2Δ strains (Figure S1). Comparable results were observed for two other snoRNA genes with polyadenylation sites 187 and 264 nt downstream from the mature snoRNA 3' end (Figures S2 and S3). The ChIP assays suggest that the accumulation of 3'-extended snoRNAs in pab2Δ cells results from defects in a posttranscriptional mechanism, rather than the increased production of readthrough transcripts.

To further characterize the cellular localization of foci containing 3'-extended snoR99 and poly(A)-rich RNA, oligo d(T) staining was combined with the DNA-intercalating agent DAPI that stains the nucleoplasm as well as with a GFP-tagged version of fibrillarin that localizes to the nucleolus. As can be seen in Figure 3B, poly(A)-rich foci were detected in pab2Δ cells (Figure 3Be), but not in wild-type cells (Figure 3Ba). Comparison of the different staining methods showed that the poly(A) bodies were concentrated in a region that was distinct from the DAPI staining but that colocalized with GFP signal (Figures 3Bf–3Bh).
a specific colocalization between the poly(A) foci and Fib1-GFP was detected in the majority of pab2Δ cells. The results of the FISH experiments indicate that the nucleolus of pab2Δ cells accumulates polyadenylated RNAs, including 3′-extended forms of a snoRNA.

Functional and Physical Associations between Pab2 and the Nuclear Exosome

Given the similar levels in Pol II density downstream of snoRNA genes (Figures S1–S3), the accumulation of 3′-extended polyadenylated snoRNAs in the pab2Δ strain suggested that Pab2 functions via a posttranscriptional mechanism. To get insights into the pathway associated with Pab2-dependent snoRNA synthesis, we compared the expression profile of pab2Δ cells with the RNA profiles from all available fission yeast mutants to verify for significant overlap in regulated genes. Significantly, of those 113 Pab2-upregulated genes, 37 (33%) showed increased expression in cells deleted for the 3′-5′ exonuclease rrp6Δ (Wilhelm et al., 2008) (P = 8 × 10^{-11}), and similarly, 37 genes (33%) showed increased expression in the dis3-54Δ strain (Wang et al., 2008) (P = 5 × 10^{-15}) (Figures 4A and 4B). The dis3-54Δ strain contains an amino acid substitution in the exonuclease domain of the exosome component Dis3/Rrp44 that impairs its catalytic activity (Murakami et al., 2007). Overall, 24 genes showed overlap between the lists of upregulated genes from pab2Δ, rrp6Δ, and dis3-54Δ (Figure S4). These results underscore the important functional relationship among Pab2, Rrp6, and Dis3.

The significant overlap between the expression profiles of pab2Δ, rrp6Δ, and the dis3-54Δ mutants suggested that Pab2 might physically interact with components of the exosome complex. To test this possibility, we affinity purified TAP-tagged versions of Rrp6 and Dis3 from extracts of cells that also expressed a HA-tagged version of Pab2. As can be seen in Figure 4C, Pab2 was coimmunoprecipitated with Dis3-TAP (lane 5) as well as with Rrp6-TAP (lane 6) but was not detected in a control purification (lane 4). These protein associations were not sensitive to RNases (data not shown). These results indicate that Rrp6 and Dis3 can be found in a complex with Pab2.

Pab2 Is Required for Rrp6-Dependent Processing but Functions in a Pathway Distinct from the Core Exosome

To further characterize the functional relationship between Pab2, Rrp6, and the core exosome, double mutants were generated. Deletion of pab2Δ from a strain that expressed a catalytically
impaired version of Dis3 (dis3-54) exacerbated the growth defect of the dis3-54 single mutant strain at all tested temperatures (Figure 5A). In contrast, the pab2Δ rrp6Δ double mutant strain showed a comparable growth rate to that of the rrp6Δ single mutant. These results suggest that whereas Pab2 and Rrp6 function in the same pathway, Pab2 and Dis3 function in distinct pathways. This conclusion was supported by RNA analyses, which demonstrated that the level of 3'-extended polyadenylated forms of snoRNA snR99, as well as the reduction in mature snR99 in the pab2Δ rrp6Δ double mutant, was similar to either single mutant strains (Figure 5B, compare lanes 11 and 12 to lanes 9 and 10 and 3 and 4; Figure 5C). Conversely, the level of 3'-extended poly(A)+ forms of snR99 in the pab2Δ dis3-54 double mutant was markedly increased relative to either single mutant strains (compare lanes 15 and 16 to 13 and 14 and 3 and 4); this was particularly noticeable for 3'-extended species of snR99 with short poly(A) tails. Furthermore, combining the dis3-54 allele with the deletion of pab2 restored the reduction of mature snoRNA detected in the pab2Δ single mutant (Figure 5B and 5C).

We also tested whether the polyadenylation of 3'-extended snoRNAs that accumulate in pab2Δ cells was dependent on the poly(A) polymerase activity of the TRAMP complex. We therefore deleted cid14, which encodes the single catalytic subunit of the fission yeast TRAMP complex (Win et al., 2006). As can be seen in Figure 5B, the length of poly(A) tails of 3'-extended snR99 in a pab2Δ cid14Δ double mutant strain was comparable to that of the single pab2Δ strain (compare lanes 7 and 8 to 3 and 4). Consistently, the poly(A) bodies that specifically accumulated in the nucleus of pab2Δ cells were still detected in the pab2Δ cid14Δ strain (Figure S6). These results suggest that Pab2 functions independently of the poly(A) polymerase activity of the TRAMP complex. Interestingly, the pab2Δ cid14Δ double mutant strain exhibited synthetic growth defects (Figure 5A). Moreover, deletion of cid14 in the pab2Δ strain restored the lower levels of mature snoRNA seen in the pab2Δ single mutant (Figure 5A, compare lanes 7 and 8 to 3 and 4; Figure 5C), similar to the pab2Δ dis3-54 double mutant.

Consistent with a nuclear-specific role for Pab2 in exosome-mediated snoRNA processing, cells deleted for ski7, which encodes a cytoplasmic-specific exosome-associated protein, did not accumulate 3'-extended polyadenylated snoRNA (Figure S7). Moreover, ski7 demonstrated no genetic interaction with pab2 (Figure 5A).

Taken together, these data suggest that Pab2 is required for Rrp6-dependent processing of 3'-extended polyadenylated snoRNAs. Conversely, although our results support a role for Dis3 and Cid14 in snoRNA metabolism, they appear to function in a pathway that diverges from that of Pab2.

Figure 5. Pab2 Is Required for Rrp6-Dependent Processing but Functions in a Pathway Distinct from the Core Exosome
(A) Synthetic growth defects of pab2Δ dis3-54 and pab2Δ cid14Δ double mutants.
(B) Equal amounts of total RNA prepared from the indicated strains were treated with RNase H in the presence of a DNA oligonucleotide complementary to H/ACA class snR99. RNase H reactions were performed in the presence (+) or absence (−) of oligo(dT). Size markers (in nucleotides) are indicated on the left.
(C) Quantification of alterations in mature snR99 levels, with the wild-type ratio set to 1. Values represent the means of at least three independent experiments, and bars correspond to standard deviations.
RNA polymerase II (Buratowski, 2005; Hirose and Manley, 2000; Proudfoot, 2004). Accordingly, many factors involved in 3' end processing/polyadenylation of mRNAs are recruited late during the transcription cycle and near the polyadenylation site of genes (Ahn et al., 2004; Kim et al., 2004). To determine whether Pab2 is associated with sites of snoRNA transcription, ChIP assays were performed using a TAP-tagged version of Pab2 (Lemieux and Bachand, 2009). Two independently transcribed snoRNA genes were monitored for Pab2 occupancy by ChIP: the C/D class SNOR68 and the H/ACA class SNR99. Pab2 was strongly recruited to both SNOR68 (Figure 6A) and SNR99 (Figure 6B) genes. Significantly, Pab2 showed the greatest crosslinking.
signal near the polyadenylation site of both snoRNA genes. These ChIP experiments indicate that Pab2 is recruited to sites of snoRNA transcription and that Pab2 is enriched near the polyadenylation site of two independent snoRNA genes.

We next examined whether Pab2 is bound to 3'-extended polyadenylated snoRNAs by RNA immunoprecipitation (RNA-IP) assays. Because 3'-extended polyadenylated snoRNAs are hardly detectable in wild-type cells (Figure 2), we performed these experiments in an rap6Δ genetic background as these RNA species accumulate in the absence of Rrp6 (Figure 5). As can be seen in Figure 6C, a large enrichment of polyadenylated snR99 was observed in a Pab2 precipitate as compared to a control purification (upper panel, lanes 3 and 4). In contrast, the abundant cytoplasmic srp7 RNA was not enriched in precipitates of Pab2 (middle panel, lanes 3 and 4). No signal was detected in the absence of reverse transcription, indicating that the observed amplification was not due to the presence of residual DNA in the immunoprecipitates (Figure 6C, lower panels). Real-time RT-PCR analysis using primer sets to different snoRNAs confirmed the specific enrichment for other polyadenylated snoRNAs in Pab2 precipitates (Figure 6D). These results show that Pab2 is associated with polyadenylated snoRNAs.

We also examined whether the accumulation of 3'-extended snoRNAs perturbed the subcellular localization of Pab2. We therefore visualized the localization of a GFP-tagged version of Pab2 in wild-type and rap6Δ cells. Whereas Pab2-containing foci were rarely observed in normal cells (Figure 6Eb), the absence of Rrp6 caused the concentration of Pab2 in specific nuclear foci (Figure 6Ed). Notably, the Pab2 foci in rap6Δ cells coincided with foci corresponding to 3'-extended forms of snR99 (Figures 6Fa–6Fc). Taken together, these results suggest that poly(A)-bound Pab2 is found at sites of polyadenylated snoRNA accumulation.

DISCUSSION

PAPBs play essential roles in eukaryotic gene expression. Whereas PAPBs play key functions in gene expression via the control of mRNAs, the role of PAPBs in the expression of noncoding RNAs has never been reported. In the course of studying the function of the fission yeast PABPN1 homolog Pab2, we have performed a genome-wide study to address the functional significance of the nuclear PABP. In addition to identifying a novel function for the nuclear PABP in the synthesis of noncoding RNAs, our results provide important insights into exosome recruitment to polyadenylated RNA substrates.

Gene-Specific Regulation by Pab2 in Fission Yeast

Previous studies about PABPN1, which were based mainly on approaches using purified proteins and in vitro polyadenylation assays, have led to a model in which PABPN1 is critical for mRNA polyadenylation (Bienroth et al., 1993; Kerwitz et al., 2003; Wahle, 1991). It was surprising, therefore, given the important role of the 3' poly(A) tail in mRNA expression, that the abundance of most transcripts was unaffected by the deletion of fission yeast pab2, as revealed by our microarray experiments. Furthermore, 3' end analysis of several mRNAs by RNase H mapping between wild-type and pab2Δ strains showed no alteration in 3' end decision and poly(A) tail length (Figure 2 and data not shown). Our findings argue that Pab2 is not a general factor required for mRNA polyadenylation, and therefore suggest that the regulation of mRNA poly(A) tail synthesis in the nucleus is likely to be more complex than previously anticipated.

The genome-wide approach used in this study indicated that several snoRNAs were upregulated in the absence of Pab2. Although the microarray results identified mostly H/ACA box snoRNAs (Figure 1), we showed that the absence of Pab2 results in the accumulation of 3'-extended polyadenylated forms of both C/D and H/ACA class snoRNAs (Figure 2). This bias toward the detection of H/ACA class snoRNAs in the microarray experiments is likely due to the generally larger size of H/ACA versus C/D box snoRNAs, which improves stable hybridization during microarray experiments. In addition, since RNase H assays detected 3'-extended polyadenylated forms of snoRNAs for which snoRNA probes did not produce usable signals on DNA microarrays, we believe that the number of snoRNAs that were affected by Pab2 was underestimated in our study. Given that poly(A) tails in S. pombe are on average 40 nt (Lackner et al., 2007), the accumulation of snoRNAs with poly(A) tails up to 300 nt in the absence of Pab2 (Figures 2 and 5) explains, at least in part, the hyperadenylation phenotype of pab2Δ cells (Perreault et al., 2007).

A Function for Pab2 in the Synthesis of Noncoding RNAs

Given the established role of PAPBs in mRNA expression, the accumulation of polyadenylated forms of noncoding snoRNAs in pab2Δ cells was surprising. In the past few years, however, it has been established that polyadenylation not only provides stability to RNA molecules but also contributes to RNA processing via the exosome complex of 3'→5' exonucleases. Accordingly, our study identified the nuclear exosome as the machinery that functions with Pab2 to promote processing of polyadenylated snoRNAs. The direct role of Pab2 in exosome-mediated processing of polyadenylated snoRNAs is supported by several observations: (1) Pab2 is physically associated with Rrp6 and Dis3 in vivo (Figure 4C), two exonucleases specific to the exosome; (2) Pab2 interacts directly with Rrp6 (Figure 4D); (3) microarray data indicate that the absence of Pab2 does not affect the expression of rap6 or any of the genes encoding for components of the core exosome (Figure 1A and data not shown); (4) Pab2 is recruited to the polyadenylation site of snoRNA genes (Figure 6); and (5) Pab2 is bound to 3'-extended polyadenylated snoRNAs (Figure 6). The role of the exosome in the processing of polyadenylated snoRNAs is therefore conserved between fission and budding yeasts as polyadenylated snoRNAs also accumulate in strains of S. cerevisiae lacking Rrp6 (Grzecnik and Kufel, 2008; van Hoof et al., 2000; Wyers et al., 2005). Our study therefore provides significant insights into exosome-dependent processing of polyadenylated snoRNAs by demonstrating the key role of a PABP in this process. Interestingly, the genome of S. cerevisiae does not encode for a homolog of fission yeast Pab2 and mammalian PABPN1 (Winstead et al., 2000), suggesting that a yet-to-be-identified PABP is likely involved in exosome-mediated processing of polyadenylated snoRNAs in budding yeast.

Our results also indicated that polyadenylation of the 3'-extended form of a snoRNA accumulating in the pab2Δ
mutant was independent of the poly(A) polymerase activity of the TRAMP complex. Given that we identified the canonical nuclear poly(A) polymerase, the product of the S. pombe pla1 gene (homolog of S. cerevisiae pap1), as a Pab2-associated protein by tandem affinity purification (Lemieux and Bachand, 2009), we propose that Pla1 is responsible for the polyadenylation of 3′-extended snoRNA that accumulate in pab2Δ cells. Consistently, Pap1-dependent polyadenylation of snoRNAs has been reported (Carneiro et al., 2007; Grzechnik and Kufel, 2008; van Hoof et al., 2000; Wyers et al., 2005).

Despite the functional overlap between Rrp6 and Dis3, several studies using budding yeast demonstrate that depletion of these two nucleases can result in different RNA-processing defects (Allmang et al., 1999a; Dziembowski et al., 2007; Mitchell et al., 2003; van Hoof et al., 2000), suggesting that Rrp6 and Dis3 are responsible for distinctive steps in RNA processing. Furthermore, recent results now show that Rrp6 can perform specific processing events independently of the core exosome (Callahan and Butler, 2008). Our data using fission yeast are consistent with these aforementioned observations: although our genomic data indicated that Dis3, Rrp6, and Pab2 are functionally related (Figure 4 and Figure S4), the RNA-processing defects detected in the rrp6Δ and dis3-54 strains were clearly distinct (Figure 5). Notably, the defects in snoRNA processing in the pab2Δ strain were more similar to those detected in rrp6Δ and pab2Δ rrp6Δ double mutants (Figure 5). In contrast, the absence of Pab2 expression in the context of a catalytically impaired core exosome (dis3-54 allele) resulted in levels of polyadenylated snoRNAs greater than the pab2Δ and dis3-54 single mutants. These results suggest that whereas Pab2 and Rrp6 function in the same pathway, Pab2 and the core exosome participate in overlapping but distinct pathways associated to snoRNA metabolism. This conclusion is consistent with the greater enrichment of Pab2 in the Rrp6 purification relative to the Dis3 purification (Figure 4C) and the direct interaction between Pab2 and Rrp6 (Figure 4D).

How does Pab2 function in snoRNA synthesis? Although a polyadenylation-independent pathway had previously been proposed to mediate 3′ end formation of snoRNAs in S. cerevisiae (Carroll et al., 2004; Fatica et al., 2000; Kim et al., 2006; Steinmetz et al., 2001; Vasiljeva and Buratowski, 2006), recent findings suggest that polyadenylation is involved in 3′ end maturation of snoRNA precursors by the exosome (Grzechnik and Kufel, 2008). Accordingly, the accumulation of 3′-extended polyadenylated snoRNAs together with the concurrent reduction of mature snoRNAs in the pab2Δ, rrp6Δ, and pab2Δ rrp6Δ double mutant strains (Figures 2 and 5) is consistent with a precursor-product relationship. Our ability to copurify polyadenylated snoRNAs with a snoRN protein (Figure S8) is also consistent with the polyadenylated species being precursors to mature snoRNAs. These results support a model (Figure 7) in which 3′-extended polyadenylated snoRNAs that accumulate in pab2Δ cells correspond to pre-snoRNAs stalled or delayed in 3′ end processing, but that mature snoRNAs can still be synthesized via an independent pathway. This independent pathway could involve a fission yeast complex analogous to the Nrd1-Nab3-Sen1 complex that is involved in snoRNA termination and synthesis in budding yeast (Carroll et al., 2004; Kim et al., 2006; Steinmetz et al., 2001; Vasiljeva and Buratowski, 2006). Transcription complexes that escape the first termination pathway reach alternative termination sites that are recognized by an mRNA-like cleavage and polyadenylation machinery (Dheur et al., 2003; Garas et al., 2008). Polyadenylation of released 3′-extended snoRNAs provides high-affinity binding sites for Pab2 and favors the rapid transfer of Pab2 to the growing poly(A) tail. The exonucleolytic activity of Rrp6 carries out the processing of 3′-extended polyadenylated snoRNAs until it reaches a stable snoRNP complex, thus generating the mature snoRNA 3′ end.
Alternatively, defective snoRNP particles are recognized by exosome/TRAMP and directed to the degradation pathway. Defective particles can nevertheless return to the processing pathway if allowed sufficient time to remodel into stable snoRNPs, as suggested by our results in which the reduced levels of mature snoRNAs seen in pab2Δ cells were restored in the pab2Δ dis3-54 and pab2Δ cid14Δ double mutant strains (Figure 5). Our model in which Pab2 promotes Rrp6 recruitment to poly(A) tails is interesting in light of the fact that recombinant Rrp6 is relatively inefficient at degrading a poly(A) substrate in vitro (Liu et al., 2006). Together, the aforementioned activities proposed for Pab2 significantly contribute to the efficient processing of polyadenylated snoRNAs since these RNA species are hardly detectable in normal cells.

Our study also provides interesting insights into the subcellular localization where processing of polyadenylated snoRNAs takes place. We found that a 3′-extended polyadenylated snoRNA localized to discrete nucleolar foci in pab2Δ and rrp6Δ cells. This echoes a report that polyadenylated snoRNAs accumulate in a specific nucleolar domain in rrp6Δ mutant of budding yeast (Carneiro et al., 2007). We further showed that Pab2 and a 3′-extended snoRNA were colocaled in similar foci in the rrp6Δ strain, suggesting that these foci represent processing centers where maturation of polyadenylated snoRNAs is delayed due to the absence of Rrp6. We envisage that misassembled snoRNPs that are directed to the exosome/TRAMP discard pathway are also degraded in these foci.

Conclusions
Our findings unveiled a function for a PABP in the expression of noncoding RNAs. Given the extensive similarity between the yeast and human nuclear PABPs, it is likely that the function of Pab2 in exosome-dependent RNA processing described here is evolutionarily conserved. The detection of poly(A) RNA-containing aggregates in the nucleus of muscle cells of individuals with mutations in PABPN1 is a pathophysiological hallmark of the neuromuscular disorder, oculopharyngeal muscular dystrophy (OPMD). The intense accumulation of polyadenylated RNAs in a specific region of the nucleus brought about by the absence of S. pombe Pab2 is striking and raises the possibility that the intranuclear aggregates in OPMD are related to defects in the processing of noncoding RNAs.

EXPERIMENTAL PROCEDURES
DNA Microarray Analysis
cDNA synthesis of total RNAs, labeling, and microarray hybridization procedures have been described previously (Bachand et al., 2006). We determined statistical significance using significance analysis of microarray (SAM) (Tusher et al., 2001). Briefly, SAM provides a statistical value calculated for each gene based on the change in gene expression relative to the standard deviation of repeated measurements. The false discovery rate was set to be below 5%.

RNase H Analysis
Total yeast RNA was RNase H treated in a mixture containing message-specific oligonucleotides plus or minus oligo(dT) as previously described (Decker and Parker, 1993). RNA samples were resolved on 6% polyacrylamide-8 M urea gel, transferred onto nylon membranes, and probed using 32P-labeled gene-specific probes.

Fluorescent In Situ Hybridization
3′-extended snR99 and poly(A)+ RNA were visualized by FISH in S. pombe using a previously described method (Perreault et al., 2008). The 54-mer complementary to 3′-extended snR99 was conjugated with Cy5. The Cy5 signal in Figure 3A was converted to blue color using Adobe Photoshop to distinguish Cy5 and Cy3 signals. Control experiments using Cy5- and Cy3-labeled probes individually on pab2Δ cells confirmed the absence of bleed-through signal in the other channels (data not shown).

Expression of Recombinant Proteins and In Vitro Pull-Down Assays
GST and GST-Pab2 were expressed in E. coli and purified as described previously (Perreault et al., 2007). S. pombe Rrp6 was amplified by PCR using a fission yeast cDNA library (a generous gift from Charlie Hoffman) and expressed with a C-terminal Flag epitope in E. coli. For in vitro pull-down assays, equal amounts of Rrp6-coated beads were incubated with 1 μg of GST or GST-Pab2. The bound proteins were analyzed by immunoblotting using an Odyssey infrared imaging system.

RNA Immunoprecipitation Experiments
RNA IPs were performed as described previously (Ferreira-Cerca et al., 2007; Tardiff et al., 2006) using extracts prepared from a pab2Δ rrp6Δ double mutant strain that was previously transformed with a plasmid that express a Flag-tagged version of Pab2 or an empty control vector. Briefly, whole-cell extract was incubated with anti-Flag M2 beads. Following extensive washing steps, RNA was extracted from beads (IP RNA) and whole-cell extract (input RNA) using hot-phenol. RNA samples were treated with DNase I (Promega), and cDNA synthesis was primed with random hexamers (for srp7 RNA) and oligo d(T) (for polyadenylated snoRNAs). Quantitative real-time PCR was performed on a Realplex PCR machine (Eppendorf). Reported values are the averages of at least two independent experiments, and error bars represent ±1 SD.

Detailed methods are described in the Supplemental Information.

SUPPLEMENTAL INFORMATION
Supplemental Information includes one table, eight figures, Supplemental Experimental Procedures, and Supplemental References and can be found with this article online at doi:10.1016/j.molcel.2009.12.019.

ACKNOWLEDGMENTS
We thank R. Maria, M. Yaganida, and P. Beauregard for strains and plasmids; P. Charrand and F. Gallardo for advice on FISH microscopy; and S. Abou Elila and F. Dragon for critical reading of the manuscript. We also thank S. Khadayate for microarray data deposition. This work was funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) (to F.B.) and from Cancer Research UK (to J.B.). J.-F.L. was supported by a Scholarship from NSERC. F.B. is the recipient of a New Investigator Award from the Canadian Institutes of Health Research (CIHR) and a Career Development Award from the Human Frontier Science Program Organization (HFSP).

Received: May 5, 2009
Revised: August 11, 2009
Accepted: November 9, 2009
Published: January 14, 2010

REFERENCES

Molecular Cell 37, 34–45, January 15, 2010 ©2010 Elsevier Inc.

in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol. Cell 31, 91–103.

